Fly with You

多谷黑芝麻 & 蜂蜜柚子茶

0%

数据结构篇笔记-7-冒泡&插入&选择排序

复习数据结构笔记之冒泡&插入&选择排序

数据结构篇-7-冒泡&插入&选择排序

几种经典排序算法及其时间复杂度级别

冒泡、插入、选择 O(n^2) 基于比较
快排、归并 O(nlogn) 基于比较
计数、基数、桶 O(n) 不基于比较

如何分析一个排序算法?

1.学习排序算法的思路?明确原理、掌握实现以及分析性能。
2.如何分析排序算法性能?从执行效率、内存消耗以及稳定性3个方面分析排序算法的性能。
3.执行效率:从以下3个方面来衡量
1)最好情况、最坏情况、平均情况时间复杂度
2)时间复杂度的系数、常数、低阶:排序的数据量比较小时考虑
3)比较次数和交换(或移动)次数
4.内存消耗:通过空间复杂度来衡量。针对排序算法的空间复杂度,引入原地排序的概念,原地排序算法就是指空间复杂度为O(1)的排序算法。
5.稳定性:如果待排序的序列中存在值等的元素,经过排序之后,相等元素之间原有的先后顺序不变,就说明这个排序算法时稳定的。

冒泡排序

1.排序原理
1)冒泡排序只会操作相邻的两个数据。
2)对相邻两个数据进行比较,看是否满足大小关系要求,若不满足让它俩互换。
3)一次冒泡会让至少一个元素移动到它应该在的位置,重复n次,就完成了n个数据的排序工作。
4)优化:若某次冒泡不存在数据交换,则说明已经达到完全有序,所以终止冒泡。
2.代码实现(见文末)
3.性能分析
1)执行效率:最小时间复杂度、最大时间复杂度、平均时间复杂度
最小时间复杂度:数据完全有序时,只需进行一次冒泡操作即可,时间复杂度是O(n)。
最大时间复杂度:数据倒序排序时,需要n次冒泡操作,时间复杂度是O(n^2)。
平均时间复杂度:通过有序度和逆序度来分析。

什么是有序度?
有序度是数组中具有有序关系的元素对的个数,比如[2,4,3,1,5,6]这组数据的有序度就是11,分别是[2,4][2,3][2,5][2,6][4,5][4,6][3,5][3,6][1,5][1,6][5,6]。同理,对于一个倒序数组,比如[6,5,4,3,2,1],有序度是0;对于一个完全有序的数组,比如[1,2,3,4,5,6],有序度为n(n-1)/2,也就是15,完全有序的情况称为满有序度。

什么是逆序度?
逆序度的定义正好和有序度相反。核心公式:逆序度=满有序度-有序度。
排序过程,就是有序度增加,逆序度减少的过程,最后达到满有序度,就说明排序完成了。
冒泡排序包含两个操作原子,即比较和交换,每交换一次,有序度加1。不管算法如何改进,交换的次数总是确定的,即逆序度。

对于包含n个数据的数组进行冒泡排序,平均交换次数是多少呢?最坏的情况初始有序度为0,所以要进行n(n-1)/2交换。最好情况下,初始状态有序度是n(n-1)/2,就不需要进行交互。我们可以取个中间值n(n-1)/4,来表示初始有序度既不是很高也不是很低的平均情况。
换句话说,平均情况下,需要n*(n-1)/4次交换操作,比较操作可定比交换操作多,而复杂度的上限是O(n^2),所以平均情况时间复杂度就是O(n^2)。
以上的分析并不严格,但很实用,这就够了。
2)空间复杂度:每次交换仅需1个临时变量,故空间复杂度为O(1),是原地排序算法。
3)算法稳定性:如果两个值相等,就不会交换位置,故是稳定排序算法。

插入排序

1.算法原理
首先,我们将数组中的数据分为2个区间,即已排序区间和未排序区间。初始已排序区间只有一个元素,就是数组的第一个元素。插入算法的核心思想就是取未排序区间中的元素,在已排序区间中找到合适的插入位置将其插入,并保证已排序区间中的元素一直有序。重复这个过程,直到未排序中元素为空,算法结束。
2.代码实现(见文末)
3.性能分析
1)时间复杂度:最好、最坏、平均情况
如果要排序的数组已经是有序的,我们并不需要搬移任何数据。只需要遍历一遍数组即可,所以时间复杂度是O(n)。如果数组是倒序的,每次插入都相当于在数组的第一个位置插入新的数据,所以需要移动大量的数据,因此时间复杂度是O(n^2)。而在一个数组中插入一个元素的平均时间复杂都是O(n),插入排序需要n次插入,所以平均时间复杂度是O(n^2)。
2)空间复杂度:从上面的代码可以看出,插入排序算法的运行并不需要额外的存储空间,所以空间复杂度是O(1),是原地排序算法。
3)算法稳定性:在插入排序中,对于值相同的元素,我们可以选择将后面出现的元素,插入到前面出现的元素的后面,这样就保持原有的顺序不变,所以是稳定的。

选择排序

1.算法原理
选择排序算法也分已排序区间和未排序区间。但是选择排序每次会从未排序区间中找到最小的元素,并将其放置到已排序区间的末尾。
2.代码实现(见文末)
3.性能分析
1)时间复杂度:最好、最坏、平均情况
选择排序的最好、最坏、平均情况时间复杂度都是O(n^2)。为什么?因为无论是否有序,每个循环都会完整执行,没得商量。
2)空间复杂度:
选择排序算法空间复杂度是O(1),是一种原地排序算法。
3)算法稳定性:
选择排序算法不是一种稳定排序算法,比如[5,8,5,2,9]这个数组,使用选择排序算法第一次找到的最小元素就是2,与第一个位置的元素5交换位置,那第一个5和中间的5的顺序就变量,所以就不稳定了。正因如此,相对于冒泡排序和插入排序,选择排序就稍微逊色了。

总结&思考

1.冒泡排序和插入排序的时间复杂度都是 O(n^2),都是原地排序算法,为什么插入排序要比冒泡排序更受欢迎呢?

  • 冒泡排序不管怎么优化,元素交换的次数是一个固定值,是原始数据的逆序度。插入排序是同样的,不管怎么优化,元素移动的次数也等于原始数据的逆序度。
  • 冒泡排序移动数据有3条赋值语句,而选择排序的交换位置的只有1条赋值语句,因此在有序度相同的情况下,冒泡排序时间复杂度是选择排序的3倍,所以,虽然冒泡排序和插入排序在时间复杂度上是一样的,都是 O(n2),但是如果我们希望把性能优化做到极致,那肯定首选插入排序。

2.今天讲的这三种排序算法,实现代码都非常简单,对于小规模数据的排序,用起来非常高效。但是在大规模数据排序的时候,这个时间复杂度还是稍微有点高。
Sorting Compare
3.如果数据存储在链表中,这三种排序算法还能工作吗?如果能,那相应的时间、空间复杂度又是多少呢?

代码实现:(python)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
Python实现:
1.冒泡排序
def bubble_sort(ls):
moved = False
for i in range(len(ls)):
for j in range(len(ls)-1-i):
if ls[j] > ls[j+1]:
ls[j], ls[j+1] = ls[j+1], ls[j]
moved = True
if not moved:
break
2.插入排序
def insertion_sort(ls):
for i in range(1, len(ls)):
element = ls[i]
loc = i - 1
while loc >= 0:
if element < ls[loc]:
ls[loc+1] = ls[loc]
loc = loc - 1
else:
break
ls[loc+1] = element
3.选择排序
def selection_sort(ls):
for i in range(len(ls)):
min_idx = i
for j in range(i,len(ls)):
if ls[j] < ls[min_idx]:
min_idx = j
ls[i], ls[min_idx] = ls[min_idx], ls[i]

代码实现:(java)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
/**
* 冒泡排序
* @param a 待排序数组
* @param n 数组长度
*/
public static void bubbleSort(int[] a, int n) {
if(n<=0) return ;
for (int i = 0; i < n; i++) {
//标记一次冒泡是否存在数据交换,若存在,则改为true
boolean tag = false;
for (int j = 0; j < n-1-i; j++) {
if(a[j] > a[j+1]){
int temp = a[j];
a[j] = a[j+1];
a[j+1] = temp;
tag = true;
}
}
//若本次冒泡操作未发生数据交换,则终止冒泡操作
if (tag == false) break;
}
}

/**
* 插入排序
* @param a 待排序数组
* @param n 表示数组大小
*/
public static void insertSort(int[] a, int n) {
if(n<=1) return;
for(int i=1;i<n;i++){
int value=a[i];
int j=i-1;
//找到插入位置
for(;j>0;j--){
if(a[j]>value){
a[j+1]=a[j];//移动数据
} else {
break;
}
}
a[j+1]=value;//插入数据
}
}

/**
* 选择排序
* @param a 待排序数组
* @param n 数组长度
*/
public static void selectSort(int[] a, int n) {
if(n<=0) return;
for(int i=0;i<n;i++){
int min=i;
for(int j=i;j<n;j++){
if(a[j] < a[min]) min=j;
}
if(min != i){
int temp=a[i];
a[i]=a[min];
a[min]=temp;
}
}
}